Repairing inconsistent answer set programs using rules of thumb: A gene regulatory networks case study

نویسندگان

  • Elie Merhej
  • Steven Schockaert
  • Martine De Cock
چکیده

Answer set programming is a form of declarative programming that can be used to elegantly model various systems. When the available knowledge about these systems is imperfect, however, the resulting programs can be inconsistent. In such cases, it is of interest to find plausible repairs, i.e. plausible modifications to the original program that ensure the existence of at least one answer set. Although several approaches to this end have already been proposed, most of them merely find a repair which is in some sense minimal. In many applications, however, expert knowledge is available which could allow us to identify better repairs. In particular, we consider the scenario where this expert knowledge is formulated as rules of thumb, but no training data is available to learn how these rules of thumb interact. The main question we address in this paper is whether we can then still aggregate the rules of thumb in a useful way. In addition to standard aggregation techniques, we present a novel statistical approach that assigns weights to these rules of thumb, by sampling, in a particular way, from a pool of possible repairs. In particular, we evaluate how frequently each given rule of thumb is violated in the sample of repairs, and use the Z-score of this distribution to set the weight of that rule. We analyze the potential of using expert knowledge in this way, by focusing on a specific case study: Gene Regulatory Networks. We describe the rules of thumb that express available expert knowledge from the biological literature and explain how they can be encoded while repairing inconsistencies. Finally, we experimentally compare the proposed repair strategies using rules of thumb against the baseline strategy of identifying minimal repairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Rules of Thumb for Repairing Inconsistent Answer Set Programs

Answer set programming is a form of declarative programming that can be used to elegantly model various systems. When the available knowledge about these systems is imperfect, however, the resulting programs can be inconsistent. In such cases, it is of interest to find plausible repairs, i.e. plausible modifications to the original program that ensure the existence of at least one answer set. A...

متن کامل

Repairing Boolean regulatory networks using Answer Set Programming

Models of biological regulatory and signalling networks are increasingly used to formally describe and understand complex biological processes. Such models are often repaired whenever new observations become available, because the model cannot generate behaviours consistent with the new observations, or because the behaviours are contradictory. This process of model repair is often manual and t...

متن کامل

Preferred Answer Sets for Ordered Logic Programs

We extend answer set semantics to deal with inconsistent programs (containing classical negation), by finding a “best” answer set. Within the context of inconsistent programs, it is natural to have a partial order on rules, representing a preference for satisfying certain rules, possibly at the cost of violating less important ones. We show that such a rule order induces a natural order on exte...

متن کامل

Data Repair of Inconsistent DL-Programs

Nonmonotonic Description Logic (DL) programs support rule-based reasoning on top of Description Logic ontologies, using a well-defined query interface. However, the interaction of the rules and the ontology may cause inconsistency such that no answer set (i.e. model) exists. We thus consider repairing DL-programs, i.e., changing formulas to obtain consistency. Viewing the data part of the ontol...

متن کامل

Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks

The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017